TAULE III

PHARMACOLOGICAL SCREENING RESULTS

			Aotidepressant act. ⁶		
		and the of	Dopa	esponse	
Comud	In Approx LD	Orat	lo bo	oral Oral	
-			,		
la	800	900	++	++	
łb	2000	>2000	÷	+++	
ld	2000	>2000	+	+	
lg	750	>1000	++	++	
Ii	>2000	>2000	+	+ +	
Ha	800	>1000	+	+	
Hh	800	>1000	++	+	
HHa	150	850	+	+	
HIb	60	500	+	+	
HIC	125	750	+	++	
HId	125	750	+	++	
IIIe	100	400	+- +-	++	
1111	150	750	++	÷+	
Illg	100	400	++++	- 1 - +-	
IIIh	100	750	+	+	
111i	120	850	+	+++	
111	500	1200	+	+	
IIIk	125	750	+	+-	
1111	125	400	+ + +	++	
IIIm	500	1000	+	++	
HIn	500	1000	÷	++	
ΗIo	100	400	++	++	
IVa	400	600	+	+	
IVb	125	600	+	+	
IVe	125	600	+	+	
1Vd	500	>1000	-+-	-+-	
IVe	125	600	++	++	
IVC	90	600	++	+	
lVg	300	1000	+-	++	
VIa	60	500	++	+	
VIh	40	200	+	+	
VIe	60	400	+	+-+-	
VId	15	75		+++	
Imipramine	150	400	+++	+ + +	
Amitryptyline	80	350	+ + +	+ + +	

⁹ The dihydrochlorides were administered as 5% solutions in water and other insoluble compounds as 2% suspensions in 0.3% tragacanth to albino Swiss-Webster mice. ⁶ Beference 5. Dose, 25 mg/kg; activity at 4 hr.

7,8,9,10-Tetrahydro-6H-cyclohepta[b]**quino**line-**11-thione** (II**a**).—P₂S₅, 44.4 g (0.2 mole), was added to a stirred suspension of 42.6 g (0.2 mole) of 7,8,9,10-tetrahydro-6H-cyclohepta[b]-quinolin-11-one in 400 ml of pyridine. The mixture was refluxed for 3 hr and poured gradually into 1600 ml of hot water. After cooling to room temperature, the product was filtered and recrystallized.

Compounds IIb and IIc were prepared as above.

11-[3-(Dimethylamino)propoxy]-7,8,9,10-tetrahydro-6H-cyclohepta]b]quinoline (IIIc).—A mixture of 8.5 g (0.04 mole) of 7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-one, 2.2 g (0.048 mole) of NaH (53.2% suspension in oil), and 250 ml of DMF was stirred and heated in an oil bath, maintained at 75–80° for 2 hr under N₂. 3-(Dimethylamino)propyl chloride (9.7 g, 0.08 mole) was added, dropwise, and the mixture was heated at 75–80° for an additional 3 hr. After cooling, the mixture was filtered and the filtrate was evaporated *in vacuo*. The residue was diluted with H₂O and was extracted with ether. The extract was prepared by adding 2 equiv of HCl in *i*-PrOH to the residue (from ether extract) in EtOH, precipitated with ether, and refrigerated. All other compounds (III) were prepared as above except that H1h and H1n were isolated as bases.

11-[2-(Dimethylamino)ethylthio]-7,8,9,10-tetrahydro-6Hcyclohepta[b]quinoline (IVa).—A mixture of 5.7 g (0.025 mole) of 7,8,9,10-tetrahydro-6H-cyclohepta{b}quinoline-11-thione, 1.38 g (0.03 mole) of NaH (52% suspension in oil), and 80 mL of DMF was heated, with stirring, at 70–75° for 3 hc, under N₂. The solution was allowed to cool and 4.0 g (0.0375 mole) of 2-dimethylamino)ethyl chloride was added, dropwise. After the addition, the mixture was kept at 70–75° for 4 hr. On cooling, the mixture was filtered and the filtrate was evaporated *in cacae.* The residue was vashed (H₂O) and dried (Na₂SO₄). After removal of the solvent, the residue solidified and was recrystallized.

Compound IVd was prepared in the same manner; IVb c and IVe-g were isolated as dihydrochlorides.

2,11-Dichloro-7,8,9,10-tetrahydro-6H-cyclohepta $\{b\}$ **quinoline** (**Vb**).- (2-Chloro-7,8,9,10-tetrahydro-6H-cyclohepta $\{b\}$ quinolin-11-one (58 g, 0.234 mole) was added under stirring to 80 ml of freshly distilled POCl₃, cooled in an ice bath. The mixture was allowed to warm up to room temperature and there refuxed for 1 hr. After cooling, the mixture was ponred over 1 kg of crashed ice and stirred for a few minutes. After 1 hr at room temperature, CHCl₃ (250 ml) was added and the solution was basified with **NH**₄OH. The approximate hyper was separated and extracted twice (CHCl₃). The combined extract was washed (H₂O), dried, and evaporated *in vacuo*. The residue was recrystallized.

Compounds Va and Vc were obtained in the same manner. 11-[2-(Dimethylamino)ethylamino]-7,8,9,10-tetrahydro-6Hcyclohepta[b]quinoline (VIa).—A mixture of 11.5 g (0.05 mole) of 11-chloro-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinoline,⁵ 8.8 g (0.1 mole) of 2-(dimethylamino)ethylamine, 0.5 g of copperbronze powder, and a few crystals of l₂ was heated in a closed steel cylinder at 180° for 24 hr, then treated with H₂0 and ether. The aqueous layer was separated and extracted with thether. The combined ether solution was washed (H₂0) several (imes, dried, and evaporated *in cacuo*. The product was isolated as the dihydrochloride as in previous examples.

Compounds VIb d were prepared in the same way.

Acknowledgments. The author is grateful to Dr. N. Plotnikoff and his staff for the pharmacological test results and to Messrs, O. Kolsto and V. Rauschel and their staff for elemental analyses.

Hypocholesteremic Agents. IV. Some Substituted Piperazines

H. B. WRIGHT AND D. L. MARTIN

Research Division, Abbott Laboratories, Narth Chicago, Illinois 60064

Received November 13, 1967

In a pharmacological study of chlorocyclizine^{1a} and N-(\$-phenvl-\$-3-chlorophenvl-\$-hvdroxyethyl)-N'methylpiperazine (25)¹¹, Schmidt and Martin² found these compounds to be effective in causing a reduction in blood cholesterol concentration in mice although there was an increase in the cellular mass of the liver. This observation prompted us to prepare related compounds in the hope of finding one that would not show this adverse effect in the liver. This hope, however, was not realized. We prepared and tested 24 compounds related to the two piperazines mentioned above. These compounds showed varying degrees of lowering of blood cholesterol but this phenomenon was accompanied in general by an increased cellular mass in the liver. Many of the compounds had only weak activity and required the use of a high dosage. [p-

^{(1) (}a) Diparalence. As Prepared in dos laboratory by R. J. Michaels and A. W. Weston.

⁽²⁾ J. L. Sehmidt and D. L. Mactin, Toxicol. Appl. Photocol. 7, 257 (1965).

N 7	
iN.	OTES.
• •	0170

TABLE I CR²CON NR³

				R N	<u> </u>			
No.	R	\mathbb{R}^1	\mathbb{R}^2	R ³	Bp (mm) or mp, °C	Recrystn solvent or $n \mathbb{D} (t_j \circ \mathbb{C})^h$	Yield. %	Formula ^a
1	Xanthyl	• • •	Н	Benzyl	169 - 168	Me-Ac	71	$C_{25}H_{24}N_2O_2$
2	Phenyl	Phenyl	Н	Benzyl	124 - 126	$\rm Et_2O$	93	$\mathrm{C}_{25}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}$
3	Phenyl	Allyl	Н	Methyl	165(2)	1.5406(22.5)	54	${ m C_{16}H_{22}N_{2}O^{b}}$
4	Phenyl	n-Amyl	Η	\mathbf{Methyl}	174(0.45)	1.5210(22.5)	73.5	$\mathrm{C}_{18}\mathrm{H}_{28}\mathrm{N}_{2}\mathrm{O}$
5	n-Heptyl	$n ext{-Heptyl}^d$	Н	Methyl	172(0.5)	1.4704(23)	72	$C_{91}H_{42}N_2O$
6	Phenyl	Phenyl	OH	Benzyl	186 - 188	Ο _t H	74	$\mathrm{C}_{25}\mathrm{H}_{26}\mathrm{N}_{2}\mathrm{O}_{2}\cdot\mathrm{HCl}$
7	Phenyl	Phenyl	\mathbf{Cl}	Benzyl	96-98	$\mathrm{Et}_{2}\mathrm{O}$	46	$C_{25}H_{25}ClN_2O$
9	Phenyl	Phenyl	Methoxy	Methyl	169 - 170	Et_2O	Low	$\mathrm{C_{20}H_{24}N_2O_2}$
12	1-Naphthyl			Methyl	212(1.6)		57	$\mathrm{C_{16}H_{18}N_2O^c}$
13	Phenyl	Phenyl	н	He	208-210	MK–Sk	Low	$C_{20}H_{22}N_2O_2$
14	Phenyl	Phenyl	Η	Methyl ⁽	99-100	$\mathrm{Et}_{2}\mathrm{O}$	58	$\mathrm{C_{20}H_{24}N_2O\cdot H_2O}$
15	Phenyl	Phenyl	Hø		114 - 115	В	71	$C_{18}H_{19}NO$

^a All compounds were analyzed for C, H. ^b C: calcd, 74.38; found, 75.02. ^c The hydrochloride had mp 280-285°. Anal. Calcd: C, 66.08; H, 6.59. Found: C, 65.78; H, 6.60. ^d We are indebted to Dr. Roger Adams for a supply of *n*-diheptylacetic acid. ^e A derivative of 2,2-dimethyl-3-ketopiperazine. 'A derivative of homopiperazine. 'A morpholinyl derivative. 'Me-Ac = MeOH- Me_2CO , MK = butanone, Sk = Skellysolve B, B = benzene.

TABLE II

No.	R	Bp (mm) or mp ₁ °C	${ m Recrystn} \\ { m solvent}^c$	Yield, %	Formula	Analyses
16	$Cyanomethyl^a$		$\mathbf{E}\mathbf{A}$			
17	Aminoethyla					
18	$\rm CH_2 \rm CONH_2$ methylene carbamyl	156 - 158	\mathbf{DMF}	66	$C_{19}H_{22}ClN_{3}O$	С, Н
19	COCH_3	144 - 146	$\rm Et_2O$	Low	$C_{19}H_{21}ClN_2O \cdot HCl$	N
20	COCH ₃ Cl	158 - 160	$EtOH-Et_2O$		$C_{19}H_{20}Cl_2 \cdot HCl$	С, Н
21	$\mathrm{COC}_6\mathrm{H}_5$	126 - 128	\mathbf{Sk}	72	$C_{24}H_{23}ClNO_{2}$	С, Н
22	$\rm CH_2 COOC_2 H_5$	222-230(2)	Т	50	$C_{21}H_{25}ClN_2O_2$	С, Н
23	CH_3	110-112	\mathbf{Sk}	71	$C_{18}H_{20}N_2O^b$	С, Н
24	$CH_2CH = CHC_6H_5$	111 - 112	\mathbf{Sk}	54	$\mathrm{C}_{26}\mathrm{H}_{27}\mathrm{ClN}_2$	С, Н
e						

^a The preparation and physical constants of compounds 16 and 17 were reported by M. Freifelder, J. Am. Chem. Soc., 82, 2386 (1960). ^b Compound 23 contains the xanthyl radical. $^{\circ}$ EA = EtOH, DMF = dimethylformamide, T = toluene, Sk = Skellysolve B.

TABLE	III.	DECREASE	OF	BLOOD	CHOLESTEROL
	****		· · ·	DHOOD	

IABLE III,	DECREASE OF	OF BLOOD CHOLESTEROL				
	Calcd	Response,	% increase			
Compd	mg/kg/day	redn	wt			
1	400	31				
	400	17	8			
2	87.5	17	24			
3	43.8	13	30			
4	62.5	20				
5	500	41				
6	375	55	16			
7	500	59	24			
15	175	8	25			
16	200	33	46			
	200	38	33			
17	62.5	53	2			
	62.5	44	10			
	31.2	20	18			
18	62.5	21	• •			
	62.5	27	28			
20	112.5	20				
21	500	8	33			
24	500	47				
\mathbf{T} riparanol	100	49	4			
	10	27	••			
Chlorocyclizine	40	33	51			
25	26	44	19			

 $(\beta - \text{Diethylaminoethoxy}) \\ phenyl] - 1 - (p - tolyl) - 2 - (p - chloro-phenyl] - 2 - (p$ phenyl)ethanol (triparanol), a known hypocholesteremic agent, was included in Table III as a control.

The compounds are reported in Tables I-III and were screened by a method previously described.³

Experimental Section⁴

Table I.--The compounds in this table were prepared by the acylation of a monosubstituted piperazine by the appropriate acid chloride in a conventional manner. They were purified by distillation or recrystallization from a suitable solvent.

Table II.---These compounds were prepared by the alkylation of a monosubstituted piperazine by a standard procedure. They were purified by distillation or recrystallization from a solvent.

Acknowledgment.-We are indebted to Orville Kolsto and the microanalytical staff for analytical data.

(3) H. B. Wright, D. A. Dunnigan, and U. Biermacher, J. Med. Chem., 7, 113 (1964).

⁽⁴⁾ Melting points were taken on a calibrated Hoover capillary melting point apparatus. Where analyses are indicated only by symbols of the elements analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.